How do you find exact value of cos (pi/12)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Bdub Mar 30, 2016 cos (pi/12)=sqrt6/4+sqrt2/4 Explanation: cos (pi/12)=cos(pi/4 -pi/6) cos(A-B)=cosAcosB+sinAsinB cos(pi/4 -pi/6)=cos (pi/4)cos(pi/6)+sin(pi/4)sin(pi/6) cos(pi/4 -pi/6)=sqrt2/2*sqrt3/2+sqrt2/2*1/2=sqrt6/4+sqrt2/4 cos (pi/12)=sqrt6/4+sqrt2/4 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 94175 views around the world You can reuse this answer Creative Commons License