How do you find all the zeros of #x^5+x^3-30x #?
1 Answer
Jul 8, 2018
Factor to find zeros:
#0, +-sqrt(5)# and#+-sqrt(6)i#
Explanation:
After separating out the common factor
#x^5+x^3-30x = x(x^4+x^2-30)#
#color(white)(x^5+x^3-30x) = x(x^2+6)(x^2-5)#
#color(white)(x^5+x^3-30x) = x(x-sqrt(6)i)(x+sqrt(6)i)(x-sqrt(5))(x+sqrt(5))#
Hence zeros:
#0, +-sqrt(5)# and#+-sqrt(6)i#