How do you find all the zeros of f(x) = x^4+ -7x^2 -144f(x)=x4+7x2144?

1 Answer
Mar 11, 2016

x = +-4, +-3ix=±4,±3i

Explanation:

f(x) - x^4 - 7x^2 - 144 f(x)x47x2144 (Since "+ -" = -+ -=)

Let z = x^2z=x2
f(x) = z^2 - 7z - 144f(x)=z27z144

To find all zeros set f(x) = 0f(x)=0
z^2 - 7z - 144 = 0 z27z144=0

Factorizing:
(z+9) (z-16) = 0(z+9)(z16)=0

Therefore z = -9 or 16z=9or16

But z = x^2 -> x = +- sqrt(z)z=x2x=±z

With z = -9, x = +-3iz=9,x=±3i
And with z = 16, x = +-4z=16,x=±4