How do you find all the zeros of #f(x)=2x^3+5x^2+4x+1#?
1 Answer
Aug 3, 2016
Explanation:
#f(x) = 2x^3+5x^2+4x+1#
Note that:
#f(-1) = -2+5-4+1 = 0#
So
#2x^3+5x^2+4x+1#
#=(x+1)(2x^2+3x+1)#
Substituting
#2x^2+3x+1 = 2-3+1 = 0#
So
#2x^2+3x+1 = (x+1)(2x+1)#
The final zero is