How do you find all six trigonometric functions of (5pi)/6? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 22, 2015 On the trig unit circle: sin ((5pi)/6) = sin (pi - pi/6) = sin (pi/6) = 1/2 cos ((5pi)/6) = cos (pi - pi/6) = -cos (pi/6) = (-sqrt3)/2 tan ((5pi)/6) = 1/(-sqrt3) = (-sqrt3)/3 cot ((5pi)/6) = 1/tan ((5pi)/6) = sec = 1/cos ((5pi)/6) csc = 1/sin ((5pi)/6) = Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 12873 views around the world You can reuse this answer Creative Commons License