How do you find all six trigonometric functions of #(5pi)/6#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 22, 2015 On the trig unit circle: #sin ((5pi)/6) = sin (pi - pi/6) = sin (pi/6) = 1/2# #cos ((5pi)/6) = cos (pi - pi/6) = -cos (pi/6) = (-sqrt3)/2# #tan ((5pi)/6) = 1/(-sqrt3) = (-sqrt3)/3# #cot ((5pi)/6) = 1/tan ((5pi)/6)# = #sec = 1/cos ((5pi)/6)# #csc = 1/sin ((5pi)/6) =# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 12236 views around the world You can reuse this answer Creative Commons License