How do you find a unit vector which is parallel to the vector which points from (4,13)(19,8)?

1 Answer
Mar 3, 2018

sqrt10/10((3),(-1))=sqrt10/10(3hati-hatj)

Explanation:

call the first coordinate A, and the second B

then

vec(OA)=((4),(13))

vec(OB)=((19),(8))

#now

vec(AB)=vec(AO)+vec(OB)

:. vec(AB)=-vec(OA)+vec(OB)

vec(AB)=-((4),(13))+((19),(8))

vec(AB)=((15),(-5))

now

|vec(AB)|=sqrt(15^2+5^2

|vec(AB)|=sqrt250=5sqrt10

a unit vector parallel to " "vec(AB)

is given by

1/(5sqrt10)((15),(-5))

sqrt10/50((15),(-5))

cancelling

sqrt10/10((3),(-1))=sqrt10/10(3hati-hatj)