How do you find a unit vector that is orthogonal to a and b: a = 7 i − 4 j + 8 k and b = −7 i + 9 j + 4 k?

1 Answer
Sep 27, 2016

"The reqd. unit vector"=-88/sqrt16025i-84/sqrt16025j+35/sqrt16025k

~~1/126.59(-88i-84j+35k)

Explanation:

We know from Vector Geometry that the Vector or Outer

Product of veca & vecb, i.e., vecaxxvecb is orthogonal

to both of them.

The Unit Vector, then, is, (vecaxxvecb)/||(vecaxxvecb)||.

Now, vecaxxvecb=(7,-4,8)xx(-7,9,4)

=|(i,j,k),(7,-4,8),(-7,9,4)|

=(-16-72)i-(28+56)j+(63-28)k

=-88i-84j+35k

:. ||(vecaxxvecb)||=sqrt{(-88)^2+(-84)^2+35^2}

=sqrt(7744+7056+1225)=sqrt16025~~126.59.

Hence, the reqd. unit vector=-88/sqrt16025i-84/sqrt16025j+35/sqrt16025k

or, ~~1/126.59(-88i-84j+35k)

Enjoy Maths.!