How do you find a unit vector normal to the plane which passes through the following points (1,1,1),(2,0,2),(1,1,2)?

1 Answer
Aug 29, 2016

Reqd. unit normal is (-1/sqrt2,-1/sqrt2,0), or, (1/sqrt2,1/sqrt2,0).

Explanation:

Let A(1,1,1), B(2,0,2), and, C(1,1,2) be the pts. on the plane, say pi.

We need a unit normal, call it hat n, to pi.

vec(AB)=(2-1,0-1,2-1)=(1,-1,1) in pi, and,

vec(AC)=(1-1,1-1,2-1)=(0,0,1) in pi.

:. Fom Vector Geometry, vec(AB) xx vec(AC) is a vector bot

to vec(AB) and vec(AC), hence, is the normal to the plane pi.

Now, vec(AB)xxvec(AC)=det|(hati,hatj,hatk),(1,-1,1),(0,0,1)|

=-1hati-1hatj+0hatk=(-1,-1,0), so that,

||vec(AB)xxvec(AC)||=sqrt2.

Therefore,

hatn=[vec(AB)xxvec(AC)]/||vec(AB)xxvec(AC)||, i.e.,

hat n=(-1/sqrt2,-1/sqrt2,0), or, (1/sqrt2,1/sqrt2,0)

Enjoy maths.!