How do you find a unit vector in the direction of v: v = - 5i + 2j?

1 Answer
Sep 22, 2016

-5/sqrt29i+2/sqrt29j.

Explanation:

A unit vector in the direction of vecv, is denoted by hat(vecv),

and, is defined by,

hat(vecv)=vecv/||vecv||", provided, "vecvnevec0.

Here, vecv=-5i+2j=(-5,2) nevec0

rArr ||vecv||=sqrt{(-5)^2+(2)^2}=sqrt29.

:. hat(vecv)=-5/sqrt29i+2/sqrt29j.