How do you find a unit vector in the direction of the vector v=(-3,-4)?

1 Answer
Aug 6, 2016

(-3/5,-4/5).

Explanation:

The reqd. vector is in the direction of vecv=(-3,-4).

Therefore, it must be of the form

k(-3,-4)=(-3k,-4k), where, k>0

As this is a unit vector, ||((-3k,-4k))||=1.

:. sqrt{(-3k)^2+(-4k)^2}=1.

:. 5k=1 rArr k=+-1/5, but, k>0 rArr k!=-1/5. :. k=1/5.

Hence, the unit vector=(-3/5,-4/5).