How do you find a power series converging to f(x)=x^2e^x and determine the radius of convergence?

1 Answer
Jan 16, 2017

x^2+x^3/(1!)+x^4/(2!)+...+x^(n+2)/(n!)+..., x in (-oo, oo). See the graph, with local maximum 4/e^2=0.54, nearly, at x = -1/2#.

Explanation:

1+x+x^2/(2!)+...+x^n/(n!)+... to e^x, x in (-oo, oo)

So converges (a polynomial)xx(the above series),

for x in (-oo, oo). And so,

x^2+x^3/(1!)+x^4/(2!)+...+x^(n+2)/(n!)+...

converges to x^2e^x, x in (-oo, oo).

graph{y(y-x^2e^x)(x+2+.001y)=0 [-10, 10, -5, 5]}