How do you factor #x^4+x^2+1#?
3 Answers
To find this, first notice that
Without bothering to multiply this out fully just yet, notice that the coefficient of
...
Next, the coefficient of
...
The constant term gives us
...
Note that the coefficient of
Finally notice that the coefficient of
Explanation:
This really makes a bit more sense in the complex numbers...
First note that:
#(x^2-1)(x^4+x^2+1) = x^6-1#
So zeros of
What are the zeros of
The real zeros are
Here are all
graph{((x-1)^2+(y-0)^2-0.002)((x-1/2)^2+(y-sqrt(3)/2)^2-0.002)((x+1/2)^2+(y-sqrt(3)/2)^2-0.002)((x+1)^2+(y-0)^2-0.002)((x+1/2)^2+(y+sqrt(3)/2)^2-0.002)((x-1/2)^2+(y+sqrt(3)/2)^2-0.002) = 0 [-2.5, 2.5, -1.25, 1.25]}
They form the vertices of a regular hexagon.
de Moivre's formula tells us that:
#(cos theta + i sin theta)^n = cos n theta + i sin theta#
where
For instance we find:
#(cos (pi/3) + i sin (pi/3))^6 = cos 2pi + i sin 2pi = 1 + 0 = 1#
That's the zero
If
Hence:
#x^4+x^2+1 = (x-1/2-sqrt(3)/2i)(x-1/2+sqrt(3)/2i)(x+1/2-sqrt(3)/2i)(x+1/2+sqrt(3)/2i)#
#color(white)(x^4+x^2+1) = (x^2-x+1)(x^2+x+1)#
For example:
#(x-1/2-sqrt(3)/2i)(x-1/2+sqrt(3)/2i)#
#=x^2-((1/2+color(red)(cancel(color(black)(sqrt(3)/2i))))+(1/2-color(red)(cancel(color(black)(sqrt(3)/2i)))))x+(1/2+sqrt(3)/2i)(1/2-sqrt(3/2)i)#
#=x^2-x+((1/2)^2-(sqrt(3)/2i)^2)#
#=x^2-x+(1/4-3/4i^2)#
#=x^2-x+(1/4+3/4)#
#=x^2-x+1#
Explanation:
Given:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
The difference of cubes identity can be written:
#a^3-b^3 = (a-b)(a^2+ab+b^2)#
The sum of cubes identity can be written:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
Note that:
#(x^2-1)(x^4+x^2+1) = (x^2-1)((x^2)^2+(x^2)+1)#
#color(white)((x^2-1)(x^4+x^2+1)) = (x^2)^3-1^3#
#color(white)((x^2-1)(x^4+x^2+1)) = x^6-1#
#color(white)((x^2-1)(x^4+x^2+1)) = (x^3)^2-1^2#
#color(white)((x^2-1)(x^4+x^2+1)) = (x^3-1)(x^3+1)#
#color(white)((x^2-1)(x^4+x^2+1)) = (x^3-1^3)(x^3+1^3)#
#color(white)((x^2-1)(x^4+x^2+1)) = (x-1)(x^2+x+1)(x+1)(x^2-x+1)#
#color(white)((x^2-1)(x^4+x^2+1)) = (x^2-1)(x^2+x+1)(x^2-x+1)#
Dividing both ends by
#x^4+x^2+1 = (x^2+x+1)(x^2-x+1)#