How do you factor x^4 - 13x^2 + 4?

1 Answer
May 25, 2017

x^4-13x^2+4 = (x-3/2-sqrt(17)/2)(x-3/2+sqrt(17)/2)(x+3/2-sqrt(17)/2)(x+3/2+sqrt(17)/2)

Explanation:

This quartic can be factored as a "quadratic in x^2" then taking square roots, but the resulting form of the answer is not immediately simple.

Alternatively, consider the following:

(x^2-kx+2)(x^2+kx+2) = x^4+(4-k^2)x^2+4

So putting k=sqrt(17), we find:

(x^2-sqrt(17)x+2)(x^2+sqrt(17)x+2) = x^4-13x^2+4

Using the quadratic formula, the zeros of x^2+-sqrt(17)x+2 are:

(+-sqrt(17)+-sqrt(17-4(1)(2)))/(2*1) = +-sqrt(17)/2+-sqrt(9)/2 = +-sqrt(17)/2+-3/2

So we find:

x^4-13x^2+4 = (x-3/2-sqrt(17)/2)(x-3/2+sqrt(17)/2)(x+3/2-sqrt(17)/2)(x+3/2+sqrt(17)/2)

Alternatively again, consider the following:

(x^2-hx-2)(x^2+hx-2) = x^4-(4+h^2)x^2+4

So putting h=3, we find:

(x^2-3x-2)(x^2+3x-2) = x^4-13x^2+4

Using the quadratic formula, the zeros of x^2+-3x-2 are:

(+-3+-sqrt(9-4(1)(-2)))/(2*1) = +-3/2+-sqrt(17)/2

Hence the same linear factorisation as before.