How do you factor #x^3 + x = 3#?
1 Answer
May 30, 2016
where:
#x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))#
etc.
Explanation:
See:
How do you find all the real and complex roots of
There we find zeros:
#x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))#
#x_2 = 1/3(omega root(3)((81+3sqrt(741))/2)+omega^2 root(3)((81-3sqrt(741))/2))#
#x_3 = 1/3(omega^2 root(3)((81+3sqrt(741))/2)+omega root(3)((81-3sqrt(741))/2))#
where
Subtract
#x^3+x-3 = 0# .
Then