How do you factor x^3 + x = 3x3+x=3?
1 Answer
where:
x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))x1=13⎛⎝3√81+3√7412+3√81−3√7412⎞⎠
etc.
Explanation:
See:
How do you find all the real and complex roots of
There we find zeros:
x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))x1=13⎛⎝3√81+3√7412+3√81−3√7412⎞⎠
x_2 = 1/3(omega root(3)((81+3sqrt(741))/2)+omega^2 root(3)((81-3sqrt(741))/2))x2=13⎛⎝ω3√81+3√7412+ω23√81−3√7412⎞⎠
x_3 = 1/3(omega^2 root(3)((81+3sqrt(741))/2)+omega root(3)((81-3sqrt(741))/2))x3=13⎛⎝ω23√81+3√7412+ω3√81−3√7412⎞⎠
where
Subtract
x^3+x-3 = 0x3+x−3=0 .
Then