How do you factor x^3 + x = 3x3+x=3?

1 Answer
May 30, 2016

x^3+x-3 = (x-x_1)(x-x_2)(x-x_3)x3+x3=(xx1)(xx2)(xx3)

where:

x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))x1=13381+37412+38137412

etc.

Explanation:

See:
How do you find all the real and complex roots of f(x) = x^3+x-3f(x)=x3+x3?

There we find zeros:

x_1 = 1/3(root(3)((81+3sqrt(741))/2)+root(3)((81-3sqrt(741))/2))x1=13381+37412+38137412

x_2 = 1/3(omega root(3)((81+3sqrt(741))/2)+omega^2 root(3)((81-3sqrt(741))/2))x2=13ω381+37412+ω238137412

x_3 = 1/3(omega^2 root(3)((81+3sqrt(741))/2)+omega root(3)((81-3sqrt(741))/2))x3=13ω2381+37412+ω38137412

where omega = -1/2+sqrt(3)/2iω=12+32i is the primitive Complex cube root of 11

Subtract 33 from both sides of the given equation to get:

x^3+x-3 = 0x3+x3=0.

Then x^3+x-3 = (x-x_1)(x-x_2)(x-x_3)x3+x3=(xx1)(xx2)(xx3)