How do you factor #x^3+x^2+x+1#?
1 Answer
Apr 24, 2018
Explanation:
#color(blue)"factor by grouping"#
#=color(red)(x^2)(x+1)color(red)(+1)(x+1)#
#"take out the "color(blue)"common factor "(x+1)#
#=(x+1)(color(red)(x^2+1))#
#"we can factor "x^2+1" by solving "x^2+1=0#
#x^2+1=0rArrx^2=-1rArrx=+-i#
#rArrx^2+1=(x+i)(x-i)#
#rArrx^3+x^2+x+1=(x+1(x+i)(x-i)#