How do you factor x^3 - 81x3−81?
1 Answer
Oct 10, 2015
Express as a difference of cubes, then use the difference of cubes identity to find:
Explanation:
When
a^(bc) = (a^b)^cabc=(ab)c
So:
81 = 3^4 = 3^(4/3 * 3) = (3^(4/3))^381=34=343⋅3=(343)3
The difference of cubes identity is:
a^3 - b^3 = (a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
So:
x^3 - 81 = x^3 - (3^(4/3))^3x3−81=x3−(343)3
=(x-3^(4/3))(x^2 + x(3^(4/3)) + (3^(4/3))^2)=(x−343)(x2+x(343)+(343)2)
=(x-3^(4/3))(x^2+3^(4/3)x+3^(8/3))=(x−343)(x2+343x+383)