How do you factor #x^3-2x^2+3#?
1 Answer
Jan 10, 2018
Explanation:
Given:
#f(x) = x^3-2x^2+3#
Note that:
#f(-1) = -1-2+3 = 0#
So
#x^3-2x^2+3 = (x+1)(x^2-3x+3)#
The remaining quadratic has negative discriminant, so can only be factored further using complex coefficients:
#4(x^2-3x+3) = 4x^2-12x+12#
#color(white)(4(x^2-3x+3)) = (2x)^2-2(2x)(3)+3^2+3#
#color(white)(4(x^2-3x+3)) = (2x-3)^2+(sqrt(3))^2#
#color(white)(4(x^2-3x+3)) = (2x-3)^2-(sqrt(3)i)^2#
#color(white)(4(x^2-3x+3)) = ((2x-3)-sqrt(3)i)((2x-3)+sqrt(3)i)#
#color(white)(4(x^2-3x+3)) = (2x-3-sqrt(3)i)(2x-3+sqrt(3)i)#
So:
#x^2-3x+3 = (x-3/2-sqrt(3)/2i)(x-3/2+sqrt(3)/2i)#