How do you factor x3−2x2+3?
1 Answer
Jan 10, 2018
Explanation:
Given:
f(x)=x3−2x2+3
Note that:
f(−1)=−1−2+3=0
So
x3−2x2+3=(x+1)(x2−3x+3)
The remaining quadratic has negative discriminant, so can only be factored further using complex coefficients:
4(x2−3x+3)=4x2−12x+12
4(x2−3x+3)=(2x)2−2(2x)(3)+32+3
4(x2−3x+3)=(2x−3)2+(√3)2
4(x2−3x+3)=(2x−3)2−(√3i)2
4(x2−3x+3)=((2x−3)−√3i)((2x−3)+√3i)
4(x2−3x+3)=(2x−3−√3i)(2x−3+√3i)
So:
x2−3x+3=(x−32−√32i)(x−32+√32i)