How do you factor x32x2+3?

1 Answer
Jan 10, 2018

x32x2+3=(x+1)(x23x+3)

x32x2+3=(x+1)(x3232i)(x32+32i)

Explanation:

Given:

f(x)=x32x2+3

Note that:

f(1)=12+3=0

So x=1 is a zero and (x+1) a factor:

x32x2+3=(x+1)(x23x+3)

The remaining quadratic has negative discriminant, so can only be factored further using complex coefficients:

4(x23x+3)=4x212x+12

4(x23x+3)=(2x)22(2x)(3)+32+3

4(x23x+3)=(2x3)2+(3)2

4(x23x+3)=(2x3)2(3i)2

4(x23x+3)=((2x3)3i)((2x3)+3i)

4(x23x+3)=(2x33i)(2x3+3i)

So:

x23x+3=(x3232i)(x32+32i)