How do you factor #x^2 -x+7#?
1 Answer
Feb 22, 2016
Use the quadratic formula to find:
#x^2-x+7 = (x-1/2-(3sqrt(3))/2 i)(x-1/2+(3sqrt(3))/2 i)#
Explanation:
This has discriminant
#Delta = b^2-4ac = (-1)^2-(4*1*7) = 1-28 = -27#
Since this is negative
The roots of
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#= (-b+-sqrt(Delta))/(2a)#
#= (1+-sqrt(-27))/2#
#= 1/2 +- sqrt(27)/2 i#
#= 1/2 +- (3sqrt(3))/2 i#
Hence
#x^2-x+7 = (x-1/2-(3sqrt(3))/2 i)(x-1/2+(3sqrt(3))/2 i)#