How do you factor the trinomial # x^2 - 8x + 15#? Algebra Polynomials and Factoring Factorization of Quadratic Expressions 1 Answer Tony B Nov 28, 2015 #(x-3)(x-5)# Explanation: Note: #3xx5=+15# #(-3)xx(-5)=+15# as well! #(-3)+(-5)=(-8)# So we have: #(x-3)(x-5) = x^2-3x-5x+15# Answer link Related questions How do you factor trinomials? What is factorization of quadratic expressions? How do you factor quadratic equations with a coefficient? What are some examples of factoring quadratic expressions? How do you check that you factored a quadratic correctly? How do you factor #x^2+16x+48#? How do you factor #x^2-9x+20#? Question #3fdac How do you factor #8+z^6#? There is no GCF to be factor out, so is there another method to complete this? How do you factor #2t^2+7t+3#? See all questions in Factorization of Quadratic Expressions Impact of this question 1369 views around the world You can reuse this answer Creative Commons License