How do you factor the expression and use the fundamental identities to simplify 1-2cos^2x+cos^4x?

2 Answers
Oct 31, 2017

The answer is =sin^4x

Explanation:

We need

(a-b)^2=a^2-2ab+b^2

sin^2x+cos^2x=1

Therefore,

1-2cos^2x+cos^4x=(1-cos^2x)-cos^2x+cos^4x

=1(1-cos^2x)-cos^2x(1-cos^2x)

=(1-cos^2x)(1-cos^2x)

=(1-cos^2x)^2

=sin^4x

Oct 31, 2017

color(blue)(sin^4x)

Explanation:

This makes use of the Pythagorean identity:

sin^2x + sin^2x = 1

1-2cos^2x+cos^4x

cos^4x= (1-sin^2x)^2= 1-2sin^2x+sin^4x

cos^2x= 1-sin^2x

:.

1 -2(1-sin^2x)+1-2sin^2x+sin^4x

1 -2+2sin^2x+1-2sin^2x+sin^4x

1 -2+2sin^2x+1-2sin^2x+sin^4x=color(blue)(sin^4x)