How do you factor the expression #81x^6+24x^3y^3#?
1 Answer
Apr 10, 2018
Explanation:
Given:
#81x^6 + 24x^3y^3#
Note that both factors are divisible by
#81x^6 + 24x^3y^3 = 3x^3(27x^3+8y^3)#
Next note that both
#A^3+B^3 = (A+B)(A^2-AB+B^2)#
with
#27x^3+8y^3 = (3x)^3+(2y)^3#
#color(white)(27x^3+8y^3) = (3x+2y)((3x)^2-(3x)(2y)+(2y)^2)#
#color(white)(27x^3+8y^3) = (3x+2y)(9x^2-6xy+4y^2)#
Putting it all together:
#81x^6 + 24x^3y^3 = 3x^3(3x+2y)(9x^2-6xy+4y^2)#