How do you factor the expression #16x^3 + 54y^6#?

1 Answer
Dec 20, 2015

Factor out a #2# and apply the sum of cubes formula to find that

#16x^3 + 54y^6= 2(2x + 3y^2)(4x^2 - 6xy^2 + 9y^4)#

Explanation:

The sum of cubes formula states that

#a^3 + b^3 = (a+b)(a^2-ab+b^2)#

(verify this by expanding the right hand side)

With this available, we have

#16x^3 + 54y^6 = 2(8x^3 + 27y^6)#

#= 2(2^3x^3 + 3^3(y^2)^3)#

#= 2((2x)^3 + (3y^2)^3)#

(applying the sum of cubes formula)

#= 2(2x + 3y^2)((2x)^2 - (2x)(3y^2) + (3y^2)^2)#

#= 2(2x + 3y^2)(4x^2 - 6xy^2 + 9y^4)#