How do you factor cos^2 x+7 cos x+8cos2x+7cosx+8?

2 Answers
May 30, 2018

1/4(2cosx+7+sqrt17)(2cosx+7-sqrt17)14(2cosx+7+17)(2cosx+717)

Explanation:

First let t=cosxt=cosx.

y=t^2+7t+8y=t2+7t+8

Now, let's complete the square to factor this.

y=(t^2+7t)+8y=(t2+7t)+8

Note that (t+7/2)^2=(t+7/2)(t+7/2)(t+72)2=(t+72)(t+72)

=t^2+7/2t+7/2t+(7/2)^2=t2+72t+72t+(72)2

=t^2+7t+49/4=t2+7t+494

So we want to add 49/4494 into the expression and subtract it back out again.

y=(t^2+7t+49/4)+8-49/4y=(t2+7t+494)+8494

Note that 8-49/4=32/4-49/4=-17/48494=324494=174.

y=(t+7/2)^2-17/4y=(t+72)2174

Now, note that 17/4=(sqrt17/2)^2174=(172)2.

y=(t+7/2)^2-(sqrt17/2)^2y=(t+72)2(172)2

Now, we have a difference of squares and can factor it as one.

y=[(t+7/2)+sqrt17/2][(t+7/2)-sqrt17/2]y=[(t+72)+172][(t+72)172]

y=(cosx+(7+sqrt17)/2)(cosx+(7-sqrt17)/2)y=(cosx+7+172)(cosx+7172)

If we wish, we can bring a common factor of 1/212 out of each part:

y=1/4(2cosx+7+sqrt17)(2cosx+7-sqrt17)y=14(2cosx+7+17)(2cosx+717)

May 30, 2018

(cos(x) + \frac{7 + \sqrt(17)}{2})(cos(x) + \frac{7 - \sqrt(17)}{2})(cos(x)+7+172)(cos(x)+7172)

Explanation:

let u = cos(x) u=cos(x)
The question then becomes:

Factor u^2+7u+8u2+7u+8 you could just use quadratic formula here i.e. u = \frac{-b\pm \sqrt(b^2-4ac)}{2a} u=b±b24ac2a

or you could do it the long way (which isn't any better than the formula, in fact it's one of the methods use to formulate the quadratic formula) :
find two roots, r_1r1 and r_2 r2 such that (u-r_1)(u - r_2) = u^2+7u+8(ur1)(ur2)=u2+7u+8

Expand: (u-r_1)(u - r_2) = u^2 - r_1u - r_2u + (r_1)(r_2)(ur1)(ur2)=u2r1ur2u+(r1)(r2)
= u^2 - (r_1+r_2)u + (r_1)(r_2) =u2(r1+r2)u+(r1)(r2)

Thus: u^2 - (r_1+r_2)u + (r_1)(r_2) = u^2+7u+8 u2(r1+r2)u+(r1)(r2)=u2+7u+8
and therefore: - (r_1+r_2) = 7(r1+r2)=7 and (r_1)(r_2) = 8 (r1)(r2)=8

(r_1+r_2) = -7, (r_1+r_2)^2 = 49 (r1+r2)=7,(r1+r2)2=49
(r_1)^2 + 2(r_1)(r_2) + (r_2)^2 = 49 (r1)2+2(r1)(r2)+(r2)2=49
(r_1)^2 + 2(r_1)(r_2) + (r_2)^2 - 4(r_1)(r_2) = 49 - 4(8) = 17 (r1)2+2(r1)(r2)+(r2)24(r1)(r2)=494(8)=17
(r_1)^2 - 2(r_1)(r_2) + (r_2)^2 = 17 (r1)22(r1)(r2)+(r2)2=17

(r_1-r_2)^2 = 17
r_1-r_2 = \sqrt(17)
\frac{r_1+r_2 + r_1-r_2}{2} = r_1 = \frac{-7 + \sqrt(17)}{2}
\frac{r_1+r_2 - (r_1-r_2)}{2} = r_2 = \frac{-7 - \sqrt(17)}{2}

Thus, the factored form is (u + \frac{7 + \sqrt(17)}{2})(u + \frac{7 - \sqrt(17)}{2})

sub u = cos(x) to get:

(cos(x) + \frac{7 + \sqrt(17)}{2})(cos(x) + \frac{7 - \sqrt(17)}{2})