How do you factor completely x^5 - 16x^3 + 8x^2 - 128 x516x3+8x2128?

1 Answer
Nov 15, 2015

Factor by grouping, sum of cubes identity and difference of squares identity to find:

x^5-16x^3+8x^2-128x516x3+8x2128

=(x+2)(x^2-2x+4)(x-4)(x+4)=(x+2)(x22x+4)(x4)(x+4)

Explanation:

The sum of cubes identity can be written:

a^3+b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

The difference of squares identity can be written:

a^2-b^2=(a-b)(a+b)a2b2=(ab)(a+b)

Hence:

x^5-16x^3+8x^2-128x516x3+8x2128

=(x^5-16x^3)+(8x^2-128)=(x516x3)+(8x2128)

=x^3(x^2-16)+8(x^2-16)=x3(x216)+8(x216)

=(x^3+8)(x^2-16)=(x3+8)(x216)

=(x^3+2^3)(x^2-4^2)=(x3+23)(x242)

=(x+2)(x^2-2x+4)(x-4)(x+4)=(x+2)(x22x+4)(x4)(x+4)

This has no simpler factors with Real coefficients.

If you allow Complex coefficients then:

(x^2-2x+4) = (x+2omega)(x+2omega^2)(x22x+4)=(x+2ω)(x+2ω2)

where omega = -1/2+sqrt(3)/2i = cos((2pi)/3) + i sin((2pi)/3)ω=12+32i=cos(2π3)+isin(2π3) is the primitive Complex cube root of unity.