How do you factor completely #x^3 + y^3#?
1 Answer
Explanation:
Given:
#x^3+y^3#
Note that if
#x^3+y^3=(x+y)(x^2-xy+y^2)#
We can calculate the discriminant for the remaining homogeneous quadratic in
#x^2-xy+y^2#
is in standard form:
#ax^2+bxy+cy^2#
with
This has discriminant
#Delta = b^2-4ac = color(blue)(1)^2-4(color(blue)(1))(color(blue)(1)) = -3#
Since
We can factor it with complex coefficients by completing the square and using
#x^2-xy+y^2 = (x-1/2y)^2+3/4y^2#
#color(white)(x^2-xy+y^2) = (x-1/2y)^2+(sqrt(3)/2 y)^2#
#color(white)(x^2-xy+y^2) = (x-1/2y)^2-(sqrt(3)/2 y i)^2#
#color(white)(x^2-xy+y^2) = ((x-1/2y)-sqrt(3)/2i y)((x-1/2y)+sqrt(3)/2i y)#
#color(white)(x^2-xy+y^2) = (x-(1/2+sqrt(3)/2i)y)(x-(1/2-sqrt(3)/2i)y)#
So:
#x^3+y^3 = (x+y)(x^2-xy+y^2)#
#color(white)(x^3+y^3) = (x+y)(x-(1/2+sqrt(3)/2i)y)(x-(1/2-sqrt(3)/2i)y)#