How do you factor completely #x^3 – 2x^2 – 4x – 8#?
1 Answer
where
and
Explanation:
#f(x) = x^3-2x^2-4x-8#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 64+256-256-1728-1152 = -2816#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3-54x^2-108x-216#
#=(3x-2)^3-48(3x-2)-304#
#=t^3-48t-304#
where
Cardano's method
We want to solve:
#t^3-48t-304=0#
Let
Then:
#u^3+v^3+3(uv-16)(u+v)-304=0#
Add the constraint
#u^3+4096/u^3-304=0#
Multiply through by
#(u^3)^2-304(u^3)+4096=0#
Use the quadratic formula to find:
#u^3=(304+-sqrt((-304)^2-4(1)(4096)))/(2*1)#
#=(304+-sqrt(92416-16384))/2#
#=(304+-sqrt(76032))/2#
#=(304+-48sqrt(33))/2#
#=152+-24sqrt(33)#
#=2^3*(19+-3(33))#
Since this is Real and the derivation is symmetric in
#t_1=2root(3)(19+3sqrt(33))+2root(3)(19-3sqrt(33))#
and related Complex roots:
#t_2=2omega root(3)(19+3sqrt(33))+2omega^2 root(3)(19-3sqrt(33))#
#t_3=2omega^2 root(3)(19+3sqrt(33))+2omega root(3)(19-3sqrt(33))#
where
Now
#x_1 = 2/3(1+root(3)(19+3sqrt(33))+root(3)(19-3sqrt(33)))#
#x_2 = 2/3(1+omega root(3)(19+3sqrt(33))+omega^2 root(3)(19-3sqrt(33)))#
#x_3 = 2/3(1+omega^2 root(3)(19+3sqrt(33))+omega root(3)(19-3sqrt(33)))#