How do you factor completely x^3 - 1x31?

2 Answers

Using the identity a^3-b^3=(a-b)*(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2) we have that

x^3-1=(x-1)*(x^2+x+1)x31=(x1)(x2+x+1)

Jan 3, 2016

(x-1)(x^2+x+1)(x1)(x2+x+1)

Explanation:

This is a difference of cubes.

Differences of cubes can be factored as follows:

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

In your situation, a=xa=x and b=1b=1, since a^3=x^3a3=x3 and b^3=1b3=1.

x^3-1^3=(x-1)(x^2+x(1)+1^2)x313=(x1)(x2+x(1)+12)

=(x-1)(x^2+x+1)=(x1)(x2+x+1)