How do you factor completely -n^4 - 3n^2 - 2n^3?

1 Answer
Sep 5, 2017

-n^2(n+1-isqrt2)(n+1+isqrt2)

Explanation:

-n^2" is a "color(blue)"common factor"" in all 3 terms"

rArr-n^2(n^2+3+2n)

=-n^2(n^2+2n+3)

"check the "color(blue)"discriminant"" of "n^2+2n+3

"with "a=1,b=2,c=3

Delta=b^2-4ac=4-12=-8

"since "Delta<0" then the roots are not real"

"we can factorise by finding the roots of "n^2+2n+3

"using the "color(blue)"quadratic formula"

n=(-2+-sqrt(4-12))/2=(-2+-sqrt(-8))/2

color(white)(n)=-1+-isqrt2larrcolor(red)" complex roots"

rArr-n^4-3n^2-2n^3

=-n^2(n+1-isqrt2)(n+1+isqrt2)