How do you factor completely #mn^4 + m^4n#?
1 Answer
Dec 4, 2015
Separate out the common factor
#mn^4+m^4n = mn(m+n)(m^2-mn+n^2)#
Explanation:
The sum of cubes identity can be written:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
We can separate out the common factor
#mn^4+m^4n = mn(n^3+m^3)#
#= mn(m+n)(m^2-mn+n^2)#
If we allow Complex coefficients then this can be factored further as:
#=mn(m+n)(m+omega n)(m+omega^2 n)#
where