How do you factor completely #F(x) = 2x^3 - 7x + 1#?
1 Answer
Find the zeros of
#F(x) = 2(x-x_0)(x-x_1)(x-x_2)#
where:
#x_n = sqrt(42)/3 cos(1/3cos^(-1)(-(3sqrt(42))/98)+(2npi)/3)#
Explanation:
This cubic function has three irrational real zeros, for which we can find expressions using a trigonometric substitution...
Let
Then:
#F(x) = F(k cos theta) = 2k^3 cos^3 theta - 7k cos theta + 1#
I would like this to contain something like:
#4 cos^3 theta - 3 cos theta = cos 3 theta#
So I would like:
#(2k^3)/(7k) = 4/3#
Choose
Then:
#(2k^3)/4 = (7sqrt(42))/9#
So:
#2k^3 cos^3 theta - 7k cos theta + 1 = (7sqrt(42))/9(4 cos^3 theta - 3 cos theta) + 1#
#color(white)(2k^3 cos^3 theta - 7k cos theta + 1) = (7sqrt(42))/9cos 3 theta + 1#
This has zeros when:
#cos 3 theta = -9/(7sqrt(42)) = -(3sqrt(42))/98#
That is when:
#3 theta = +-(cos^(-1)(-(3sqrt(42))/98) + 2npi)" "# for integer values of#n#
So:
#cos theta = cos(1/3(+-cos^(-1)(-(3sqrt(42))/98)+2npi))#
Hence using
#x_n = sqrt(42)/3 cos(1/3cos^(-1)(-(3sqrt(42))/98)+(2npi)/3)#
for
Hence:
#F(x) = 2(x-x_0)(x-x_1)(x-x_2)#
where:
#x_n = sqrt(42)/3 cos(1/3cos^(-1)(-(3sqrt(42))/98)+(2npi)/3)#