How do you factor completely #9x^3-9x^2-4x+4#?
1 Answer
Aug 18, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2=(a-b)(a+b)#
We use this with
#9x^3-9x^2-4x+4#
#=(9x^3-9x^2)-(4x-4)#
#=9x^2(x-1)-4(x-1)#
#=(9x^2-4)(x-1)#
#=((3x)^2-2^2)(x-1)#
#=(3x-2)(3x+2)(x-1)#