How do you factor completely #8x^6n - 27y^9m#?
1 Answer
Aug 30, 2016
If
#8x^6n-27y^9m#
#=(2root(3)(n)x^2-3root(3)(m)y^3)(4root(3)(n^2)x^4+6root(3)(mn)x^2y^3+9root(3)(m^2)y^6)#
Explanation:
If we assume that
The difference of cubes identity can be written:
#a^3-b^3 = (a-b)(a^2+ab+b^2)#
So we find:
#8x^6n-27y^9m#
#=(2root(3)(n)x^2)^3-(3root(3)(m)y^3)^3#
#=(2root(3)(n)x^2-3root(3)(m)y^3)((2root(3)(n)x^2)^2+(2root(3)(n)x^2)(3root(3)(m)y^3)+(3root(3)(m)y^3)^2)#
#=(2root(3)(n)x^2-3root(3)(m)y^3)(4root(3)(n^2)x^4+6root(3)(mn)x^2y^3+9root(3)(m^2)y^6)#