How do you factor completely: 8x^4-28x^68x428x6?

1 Answer
Jul 28, 2015

8x^4-28x^6 = 4x^4(2-7x^2) = 4x^4(sqrt(2)-sqrt(7)x)(sqrt(2)+sqrt(7)x)8x428x6=4x4(27x2)=4x4(27x)(2+7x)

Explanation:

Both terms are divisible by 4x^44x4 so we can separate out that factor first...

8x^4-28x^6 = 4x^4(2-7x^2)8x428x6=4x4(27x2)

Next, if we allow irrational coefficients, 2-7x^227x2 can be treated as a difference of squares, so we can use the difference of squares identity:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

with a=sqrt(2)a=2 and b=sqrt(7)xb=7x

So:

2-7x^2 = (sqrt(2))^2 - (sqrt(7)x)^2 = (sqrt(2)-sqrt(7)x)(sqrt(2)+sqrt(7)x)27x2=(2)2(7x)2=(27x)(2+7x)

Putting it all together:

8x^4-28x^6 = 4x^4(2-7x^2) = 4x^4(sqrt(2)-sqrt(7)x)(sqrt(2)+sqrt(7)x)8x428x6=4x4(27x2)=4x4(27x)(2+7x)