How do you factor completely 3x^3y - 48xy^33x3y48xy3?

1 Answer
May 7, 2016

3xy(x-4y)*(x+4y)3xy(x4y)(x+4y)

Explanation:

3x^3y - 48xy^33x3y48xy3

Taking 3xy common in the above expression, we get,
3xy(x^2-16y^2)3xy(x216y2)
=3xy(x^2-(4y)^2)=3xy(x2(4y)2)

Now, since
(a^2-b^2) = (a-b)*(a+b)(a2b2)=(ab)(a+b)

the above expression reduces to
3xy(x-4y)*(x+4y)3xy(x4y)(x+4y)