How do you factor completely 27x^3-125y^327x3125y3?

1 Answer
Apr 26, 2016

27x^3-125y^3=(3x-5y)(9x^2+15xy+25y^2)27x3125y3=(3x5y)(9x2+15xy+25y2)

Explanation:

Notice that both of the terms are perfect cubes:

27x^3 = (3x)^327x3=(3x)3

125y^3 = (5y)^3125y3=(5y)3

So we can conveniently use the difference of cubes identity:

A^3-B^3=(A-B)(A^2+AB+B^2)A3B3=(AB)(A2+AB+B2)

with A=3xA=3x and B=5yB=5y as follows:

27x^3-125y^327x3125y3

=(3x)^3-(5y)^3=(3x)3(5y)3

=(3x-5y)((3x)^2+(3x)(5y)+(5y)^2)=(3x5y)((3x)2+(3x)(5y)+(5y)2)

=(3x-5y)(9x^2+15xy+25y^2)=(3x5y)(9x2+15xy+25y2)

The remaining quadratic factor has no linear factors with Real coefficients. If we allow Complex coefficients then we can factor a little further:

=(3x-5y)(3x-5omega y)(3x-5 omega^2 y)=(3x5y)(3x5ωy)(3x5ω2y)

where omega = -1/2+sqrt(3)/2iω=12+32i is the primitive Complex cube root of 11.