How do you factor completely 27x^3-125y^327x3−125y3?
1 Answer
Explanation:
Notice that both of the terms are perfect cubes:
27x^3 = (3x)^327x3=(3x)3
125y^3 = (5y)^3125y3=(5y)3
So we can conveniently use the difference of cubes identity:
A^3-B^3=(A-B)(A^2+AB+B^2)A3−B3=(A−B)(A2+AB+B2)
with
27x^3-125y^327x3−125y3
=(3x)^3-(5y)^3=(3x)3−(5y)3
=(3x-5y)((3x)^2+(3x)(5y)+(5y)^2)=(3x−5y)((3x)2+(3x)(5y)+(5y)2)
=(3x-5y)(9x^2+15xy+25y^2)=(3x−5y)(9x2+15xy+25y2)
The remaining quadratic factor has no linear factors with Real coefficients. If we allow Complex coefficients then we can factor a little further:
=(3x-5y)(3x-5omega y)(3x-5 omega^2 y)=(3x−5y)(3x−5ωy)(3x−5ω2y)
where