How do you factor completely 15a^2 + 55a - 2015a2+55a20?

1 Answer
Oct 26, 2016

15a^2+55a-20 = 5(3a-1)(a+4)15a2+55a20=5(3a1)(a+4)

Explanation:

First separate out the common scalar factor 55 to find:

15a^2+55a-20 = 5(3a^2+11a-4)15a2+55a20=5(3a2+11a4)

Next use an AC Method to factor 3a^2+11a-43a2+11a4:

Find a pair of factors of AC = 3*4 = 12AC=34=12 which differ by B=11B=11.

The pair 12, 112,1 works, in that 12*1 = 12121=12 and 12-1 = 11121=11.

Use this pair to split the middle term and factor by grouping:

3a^2+11a-4 = 3a^2+12a-a-43a2+11a4=3a2+12aa4

color(white)(3a^2+11a-4) = (3a^2+12a)-(a+4)3a2+11a4=(3a2+12a)(a+4)

color(white)(3a^2+11a-4) = 3a(a+4)-1(a+4)3a2+11a4=3a(a+4)1(a+4)

color(white)(3a^2+11a-4) = (3a-1)(a+4)3a2+11a4=(3a1)(a+4)

So:

15a^2+55a-20 = 5(3a-1)(a+4)15a2+55a20=5(3a1)(a+4)