How do you factor completely 15a^2 + 55a - 2015a2+55a−20?
1 Answer
Oct 26, 2016
Explanation:
First separate out the common scalar factor
15a^2+55a-20 = 5(3a^2+11a-4)15a2+55a−20=5(3a2+11a−4)
Next use an AC Method to factor
Find a pair of factors of
The pair
Use this pair to split the middle term and factor by grouping:
3a^2+11a-4 = 3a^2+12a-a-43a2+11a−4=3a2+12a−a−4
color(white)(3a^2+11a-4) = (3a^2+12a)-(a+4)3a2+11a−4=(3a2+12a)−(a+4)
color(white)(3a^2+11a-4) = 3a(a+4)-1(a+4)3a2+11a−4=3a(a+4)−1(a+4)
color(white)(3a^2+11a-4) = (3a-1)(a+4)3a2+11a−4=(3a−1)(a+4)
So:
15a^2+55a-20 = 5(3a-1)(a+4)15a2+55a−20=5(3a−1)(a+4)