How do you factor completely #1 + x^3#?
1 Answer
Dec 20, 2015
Use the sum of cubes identity to find:
#1+x^3 = (1+x)(1-x+x^2)#
Explanation:
The sum of cubes identity may be written:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
In our example, we have
#1+x^3#
#=1^3+x^3#
#=(1+x)(1^2-(1)(x)+x^2)#
#=(1+x)(1-x+x^2)#
The remaining quadratic factor
#=(1+x)(1+omega x)(1+omega^2 x)#
or if you prefer:
#=(1+x)(omega+x)(omega^2 + x)#
where