How do you factor and simplify tan2xcot2x?

1 Answer
Nov 29, 2016

4(sinxcosx)(sinx+cosx)sin22x or
-4cot 2x.csc 2x

Explanation:

tan2xcot2x=sin2xcos2xcos2xsin2x=
=sin4xcos4xsin2x.cos2x=
Since:
(a)=(sin4xcos4x)=(sin2xcos2x)(sin2x+cos2x)=
=(sinxcosx)(sinx+cosx) , and
(b)=sin2x.cos2x=(14)sin22x,
There for:
tan2xcot2x=(a)(b)=4(sinxcosx)(sinx+cosx)sin22x

There is another answer for simplification:
Since (sin^2 x - cos^2 x) = - cos 2x, then,
(a)(b)=4cos2xsin22x=(4cot2x)(1sin2x)=
4cot2x.csc2x #