How do you factor and simplify sin4xcos4x?

2 Answers
Aug 29, 2016

(sinxcosx)(sinx+cosx)

Explanation:

Factorizing this algebraic expression is based on this property:

a2b2=(ab)(a+b)

Taking sin2x=a and cos2x=b we have :

sin4xcos4x=(sin2x)2(cos2x)2=a2b2

Applying the above property we have:

(sin2x)2(cos2x)2=(sin2xcos2x)(sin2x+cos2x)

Applying the same property onsin2xcos2x

thus,

(sin2x)2(cos2x)2
=(sinxcosx)(sinx+cosx)(sin2x+cos2x)

Knowing the Pythagorean identity, sin2x+cos2x=1 we simplify the expression so,

(sin2x)2(cos2x)2
=(sinxcosx)(sinx+cosx)(sin2x+cos2x)
=(sinxcosx)(sinx+cosx)(1)
=(sinxcosx)(sinx+cosx)

Therefore,
sin4xcos4x=(sinxcosx)(sinx+cosx)

Apr 18, 2017

= - cos 2x

Explanation:

sin4xcos4x=(sin2x+cos2x)(sin2xcos2x)
Reminder:
sin2x+cos2x=1, and
cos2xsin2x=cos2x
Therefore:
sin4xcos4x=cos2x