How do you factor (a+b)^6 - (a-b)^6?

1 Answer
Aug 10, 2016

(a+b)^6-(a-b)^6=4ab(3a^2+b^2)(a^2+3b^2)

Explanation:

The difference of squares identity can be written:

x^2-y^2=(x-y)(x+y)

The difference of cubes identity can be written:

x^3-y^3=(x-y)(x^2+xy+y^2)

The sum of cubes identity can be written:

x^3+y^3=(x+y)(x^2-xy+y^2)

Hence:

x^6-y^6

=(x^3)^2-(y^3)^2

=(x^3-y^3)(x^3+y^3)

=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)

Now let x=a+b and y=a-b to find:

(a+b)^6-(a-b)^6

= x^6-y^6

=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)

=((a+b)-(a-b))((a+b)^2+(a+b)(a-b)+(a-b)^2)((a+b)+(a-b))((a+b)^2-(a+b)(a-b)+(a-b)^2)

=(2b)(a^2+color(red)(cancel(color(black)(2ab)))+color(red)(cancel(color(black)(b^2)))+a^2-color(red)(cancel(color(black)(b^2)))+a^2-color(red)(cancel(color(black)(2ab)))+b^2)(2a)(color(red)(cancel(color(black)(a^2)))+color(red)(cancel(color(black)(2ab)))+b^2-color(red)(cancel(color(black)(a^2)))+b^2+a^2-color(red)(cancel(color(black)(2ab)))+b^2)

=4ab(3a^2+b^2)(a^2+3b^2)