How do you factor 6x^5-51x^3-27x6x5−51x3−27x?
1 Answer
6x^5-51x^3-27x6x5−51x3−27x
= 3x(2x^2+1)(x-3)(x+3)=3x(2x2+1)(x−3)(x+3)
= 3x(sqrt(2)x-i)(sqrt(2)x+i)(x-3)(x+3)=3x(√2x−i)(√2x+i)(x−3)(x+3)
Explanation:
We will use the difference of squares identity:
a^2-b^2 = (a-b)(a+b)a2−b2=(a−b)(a+b)
with
First separate out the common factor
6x^5-51x^3-27x6x5−51x3−27x
= 3x(2x^4-17x^2-9)=3x(2x4−17x2−9)
The remaining quartic factor is a quadratic in
= 3x(2x^4-18x^2+x^2-9)=3x(2x4−18x2+x2−9)
= 3x((2x^4-18x^2)+(x^2-9))=3x((2x4−18x2)+(x2−9))
= 3x(2x^2(x^2-9)+1(x^2-9))=3x(2x2(x2−9)+1(x2−9))
= 3x(2x^2+1)(x^2-9)=3x(2x2+1)(x2−9)
= 3x(2x^2+1)(x^2-3^2)=3x(2x2+1)(x2−32)
= 3x(2x^2+1)(x-3)(x+3)=3x(2x2+1)(x−3)(x+3)
This is as far as we can go with Real coefficients, but if we allow Complex coefficients then this can be factored further as:
= 3x(sqrt(2)x-i)(sqrt(2)x+i)(x-3)(x+3)=3x(√2x−i)(√2x+i)(x−3)(x+3)