How do you factor 64x^3 - y^664x3y6?

1 Answer
Jun 15, 2018

64x^3-y^6=(4x-y^2)(16x^2+4xy^2+y^4)64x3y6=(4xy2)(16x2+4xy2+y4)

Explanation:

As 64x^3-y^664x3y6 can be written as (4x)^3-(y^2)^3(4x)3(y2)3, we can use the identity

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

Hence 64x^3-y^6=(4x)^3-(y^2)^364x3y6=(4x)3(y2)3

= (4x-y^2)((4x)^2+4x×y^2+(y^2)^2)(4xy2)((4x)2+4x×y2+(y2)2)

= (4x-y^2)(16x^2+4xy^2+y^4)(4xy2)(16x2+4xy2+y4)