How do you factor #5x^3 -3x^2 +16x-6#?
1 Answer
Use Cardano's method to find:
#5x^3-3x^2+16x-6 = 5(x-x_1)(x-x_2)(x-x_3)#
where:
#x_n = 1/15(3+omega^(n-1)root(3)(972+15sqrt(58983))+omega^(1-n)root(3)(972-15sqrt(58983)))#
Explanation:
Given:
#f(x) = 5x^3-3x^2+16x-6#
We can find the zeros
Then:
#f(x) = 5(x-x_1)(x-x_2)(x-x_3)#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 2304-81920-648-24300+25920 = -78644#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=25f(x)=125x^3-75x^2+400x-150#
#=(5x-1)^3+77(5x-1)-72#
#=t^3+77t-72#
where
Cardano's method
We want to solve:
#t^3+77t-72=0#
Let
Then:
#u^3+v^3+(3uv+77)(u+v)-72=0#
Add the constraint
#u^3-456533/(27u^3)-72=0#
Multiply through by
#27(u^3)^2-1944(u^3)-456533=0#
Use the quadratic formula to find:
#u^3=(1944+-sqrt((-1944)^2-4(27)(-456533)))/(2*27)#
#=(1944+-sqrt(3779136+49305564))/54#
#=(1944+-sqrt(53084700))/54#
#=(1944+-sqrt(30^2*58983))/54#
#=(972+-15sqrt(58983))/3^3#
Since this is Real and the derivation is symmetric in
#t_1=1/3(root(3)(972+15sqrt(58983))+root(3)(972-15sqrt(58983)))#
and related Complex roots:
#t_2=1/3(omega root(3)(972+15sqrt(58983))+omega^2 root(3)(972-15sqrt(58983)))#
#t_3=1/3(omega^2 root(3)(972+15sqrt(58983))+omega root(3)(972-15sqrt(58983)))#
where
Now
#x_n = 1/15(3+omega^(n-1)root(3)(972+15sqrt(58983))+omega^(1-n)root(3)(972-15sqrt(58983)))#