How do you factor #4x^3 + 36#?
1 Answer
May 9, 2016
Explanation:
First separate out the common scalar factor
#4x^3+36 = 4(x^3+9)#
Note that
We can still use the sum of cubes identity:
#a^3+b^3=(a+b)(a^2-ab+b^2)#
with
#x^3+9#
#=x^3+(root(3)(9))^3#
#=(x+root(3)(9))(x^2-x(root(3)(9))+(root(3)(9))^2)#
#=(x+root(3)(9))(x^2-root(3)(9)x+root(3)(81))#
#=(x+root(3)(9))(x^2-root(3)(9)x+3root(3)(3))#
So:
#4x^3+36 = 4(x+root(3)(9))(x^2-root(3)(9)x+3root(3)(3))#