How do you factor #3x^2 + 5#?

1 Answer
Jun 22, 2016

#3x^2+5=(sqrt(3)x-sqrt(5)i)(sqrt(3)x+sqrt(5)i)#

Explanation:

Note that if #x# is a Real number then #x^2 >= 0#.

Hence #3x^2+5 > 0#.

So this quadratic has no Real zeros and no linear factors with Real coefficients.

It can be factored with Complex numbers.

Use the difference of squares identity:

#a^2-b^2 = (a-b)(a+b)#

with #a=sqrt(3)x# and #b=sqrt(5)i# as follows:

#3x^2+5=(sqrt(3)x)^2-(sqrt(5)i)^2#

#=(sqrt(3)x-sqrt(5)i)(sqrt(3)x+sqrt(5)i)#