How do you factor 3x^2 + 53x2+5?

1 Answer
Jun 22, 2016

3x^2+5=(sqrt(3)x-sqrt(5)i)(sqrt(3)x+sqrt(5)i)3x2+5=(3x5i)(3x+5i)

Explanation:

Note that if xx is a Real number then x^2 >= 0x20.

Hence 3x^2+5 > 03x2+5>0.

So this quadratic has no Real zeros and no linear factors with Real coefficients.

It can be factored with Complex numbers.

Use the difference of squares identity:

a^2-b^2 = (a-b)(a+b)a2b2=(ab)(a+b)

with a=sqrt(3)xa=3x and b=sqrt(5)ib=5i as follows:

3x^2+5=(sqrt(3)x)^2-(sqrt(5)i)^23x2+5=(3x)2(5i)2

=(sqrt(3)x-sqrt(5)i)(sqrt(3)x+sqrt(5)i)=(3x5i)(3x+5i)