How do you factor 3(x−4)2+16(x−4)−12?
2 Answers
Factor as a quadratic in
3(x−4)2+16(x−4)−12=(x+2)(3x−14)
Explanation:
One way is to leave the
3(x−4)2+16(x−4)−12
=3(x−4)2−2(x−4)+18(x−4)−12
=(3(x−4)2−2(x−4))+(18(x−4)−12)
=(x−4)(3(x−4)−2)+6(3(x−4)−2)
=((x−4)+6)(3(x−4)−2)
=(x+2)(3x−14)
Another way of expressing this solution is to substitute
3(x−4)2+16(x−4)−12
=3t2+16t−12
=3t2−2t+18t−12
=(3t2−2t)+(18t−12)
=t(3t−2)+6(3t−2)
=(t+6)(3t−2)
=((x−4)+6)(3(x−4)−2)
=(x+2)(3x−14)
Alternatively, multiply out the original quadratic and simplify before factoring to find:
3(x−4)2+16(x−4)−12=(x+2)(3x−14)
Explanation:
3(x−4)2+16(x−4)−12
=3(x2−8x+16)+16(x−4)−12
=3x2−24x+48+16x−64−12
=3x2−8x−28
Look for a pair of factors of
The pair
So:
3x2−8x−28
=3x2−14x+6x−28
=(3x2−14x)+(6x−28)
=x(3x−14)+2(3x−14)
=(x+2)(3x−14)