How do you factor 16y^2 - 9?

2 Answers
Mar 3, 2018

See a solution process below:

Explanation:

This is a special form of the quadratic:

color(red)(a)^2 - color(blue)(b)^2 = (color(red)(a) + color(blue)(b))(color(red)(a) - color(blue)(b))

Let: a^2 = 16y^2 then:

sqrt(a^2) = sqrt(16y^2)

a = 4y

Let: b^2 = 9 then:

sqrt(b^2) = sqrt(9)

b = 3

Substituting into the rule gives:

16y^2 - 9 => color(red)((4y))^2 - color(blue)(3)^2 => (color(red)(4y) + color(blue)(3))(color(red)(4y) - color(blue)(3))

Mar 3, 2018

(4y+3)(4y-3)

Explanation:

color(red)(A^2-B^2=(A+B)(A-B))
16y^2-9=(4y)^2-(3)^2
Applying above formula,
16y^2-9=(4y+3)(4y-3)