How do you factor #1000x^3 + 216 #?
1 Answer
Dec 31, 2015
Use the sum of cubes identity to get:
#1000x^3+216#
#=(10x+6)(100x^2-60x+36)#
#=8(5x+3)(25x^2-15x+9)#
Explanation:
Both
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
with
#1000x^3+216#
#=(10x)^3+6^3#
#=(10x+6)((10x)^2-(10x)(6)+6^2#
#=(10x+6)(100x^2-60x+36)#
Alternatively, separate out the common scalar factor
#=8(5x+3)(25x^2-15x+9)#