How do you factor 100 - 81t^6?

2 Answers
Jan 21, 2017

(10 - 9t^3)(10+9t^3)

Explanation:

You can recognize squares: 100 is 10^2, 81 is 9^2
Then 100 - 81t^6 = 10^2 - (9t^3)^2 = (10 - 9t^3)(10+9t^3)

Jan 22, 2017

100-81t^6

= (10-9t^3)(10+9t^3)

= (root(3)(10)-root(3)(9)t)(root(3)(100)+root(3)(90)t+root(3)(81)t^2)(root(3)(10)+root(3)(9)t)(root(3)(100)-root(3)(90)t+root(3)(81)t^2)

Explanation:

The difference of squares identity can be written:

a^2-b^2 = (a-b)(a+b)

The difference of cubes identity can be written:

a^3-b^3 = (a-b)(a^2+ab+b^2)

The sum of cubes identity can be written:

a^3+b^3=(a+b)(a^2-ab+b^2)

Note also that:

root(3)(a)root(3)(b) = root(3)(ab)

Hence we find:

100-81t^6

= 10^2-(9t^3)^2

= (10-9t^3)(10+9t^3)

= ((root(3)(10))^3-(root(3)(9)t)^3)((root(3)(10))^3+(root(3)(9)t)^3)

= (root(3)(10)-root(3)(9)t)(root(3)(100)+root(3)(90)t+root(3)(81)t^2)(root(3)(10)+root(3)(9)t)(root(3)(100)-root(3)(90)t+root(3)(81)t^2)