How do you factor #(1-x^9)#?
1 Answer
You can use the difference of cubes identity twice to partially factor this as:
#1-x^9 = (1-x)(1+x+x^2)(1+x^3+x^6)#
or more thoroughly to find:
#1-x^9 = (1-x)(1+x+x^2)(1-2 cos((2pi)/9)x + x^2)(1-2 cos((4pi)/9)x+x^2)(1-2 cos((8pi)/9)x+x^2)#
Explanation:
The difference of cubes identity is:
#a^3-b^3 = (a-b)(a^2+ab+b^2)#
We can use this identity to partially factor
#1-x^9 = 1^3-(x^3)^3 = (1-x^3)(1+x^3+(x^3)^2))#
#=(1^3-x^3)(1+x^3+x^6)#
#= (1-x)(1+x+x^2)(1+x^3+x^6)#
It is possible to factor
To understand how this works, note that De Moivre's Theorem gives us:
#(cos x + i sin x)^n = cos(nx) + i sin(nx)#
Putting
#(cos ((2k pi)/9) + i sin ((2k pi)/9))^9 = 1#
This gives us
Every third one of these roots is a cube root of
For example:
#(x-cos((2pi)/9)-i sin((2pi)/9))(x-cos((16pi)/9)-i sin((16pi)/9))#
#=(x-cos((2pi)/9)-i sin((2pi)/9))(x-cos((2pi)/9)+i sin((2pi)/9))#
#=x^2-2cos((2pi)/9)x+(cos^2((2pi)/9) + sin^2((2pi)/9))#
#=x^2-2cos((2pi)/9)x+1#
Similarly for